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 Talking the Talk... 4

Viscosity (η/s) Extraction:

(1) Knudsen modeling of 
viscous corrections

- fluctuations change ϵ

CATHIE/TECHQM Day 1: “Modeling event-to-event 
fluctuations is important in the extraction of viscosity”

(2) Simulation of viscous hydrodynamics
(a) fluctuations change ϵ 
(b) event-to-event, ε(x,t=0)

Drescher, et.al. Phys.Rev.C76:024905,2007

My focus today

rp

pp
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Two-Source Model in Two-Particle 
Correlations: 

C(∆φ) = J(∆φ) + B(∆φ)

All pairs = Jet + 
Event-wise Correlations

B(∆φ) ∼ (1 + 2vA
2 cos(2φA) + ...)⊗ (1 + 2vB

2 cos(2φB) + ...)

In principle, event fluctuations can create       in a single event

Important: Current ridge and shoulder (aka “cone”) results at intermediate 
pT require small event-wise values of
Yet, no estimates (experimental or theoretical) exist...

...hydrodynamic simulations with fluctuations could predict   

∼ (1 + 2cAB
2 cos(2∆φ) + 2cAB

4 cos(4∆φ) + ...)
v3

v3

v3

v3 → 2cAB
3 cos(3∆φ)



 Defining Hydro Initial Conditions 6

Npart vs Ncoll

Glauber vs CGC Nagle, DNP 2009

PHOBOS Glauber MC
Drescher KLN

no rp fluctuations
with rp fluctuations

changes the eccentricity

correct selection remains 
an open question
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Heinz, Moreland, Song, arXiv:0908.2617v2
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characteristically 
different trends 
between descriptions

Optical Glauber vs CGC (fKLN)

Data fall monotonically 
regardless of description
“appear to exclude... 
Glauber initial conditions”

Neglects fluctuations...
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Nagle, DNP 2009

PHOBOS Glauber MC
Drescher KLN

no rp fluctuations
with rp fluctuations

PHOBOS Glauber MC
Drescher KLN

with fluctuations / no fluctuations KLN / Glauber
no fluctuations
with fluctuations

Event-to-event fluctuations dramatically 
increase central event eccentricity
The effect overwhelms the intrinsic 
difference between CGC and Glauber 
The point: Too early to bury Glauber on 
a qualitative comparison, yet a 
quantitative comparison may prove 
useful
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t0 = 1.0 fm/c

Viscous hydro code (v0.2) from M. Luzum and P. Romatschke
(http://hep.itp.tuwien.ac.at/~paulrom/codedown.html)(09001.488v1)

Settings: 200x200 grid, a=0.51 GeV-1, η/s = 0.08
CPU Time: ~2.5 days/collision on Xeon 2.13GHz

Initial Geometry (Npart, x=0) from PHOBOS Glauber MC v1.1

http://hep.itp.tuwien.ac.at/~paulrom/codedown.html)(09001.488v1
http://hep.itp.tuwien.ac.at/~paulrom/codedown.html)(09001.488v1
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 Simulation Stages 10

initE - constructs the initial energy density 
distribution according to optical Glauber or fKLN

vh2 - relativistic hydro evolution and records the 
freezeout surface

convert - performs the freezeout

reso - resonance decay

extract - flow parameter extraction
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initE - constructs the initial energy density 
distribution according to optical Glauber or fKLN

vh2 - relativistic hydro evolution and records the 
freezeout surface

convert - performs the freezeout

reso - resonance decay

extract - flow parameter extraction

Calculate energy density from Glauber MC
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Distribution from 
PHOBOS Glauber MC
Rotate into the 
participant plane
Smooth each Glauber 
point with a Wood-Saxon 
(r0 = 0.5 fm, d = 0.04 fm)
(If applicable, sum over 
many events) rp
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Two obstacles:

(1) Numerical error growth:
large percentage variations 
in small density regions
results in spikes in the
energy density
(partial solution) box smooth in 3x3 grid 
where density is low (< 0.01 peak)

(2) Freeze-out hyper-surface
Technical: 

current algorithm assumes simple 
“almond” geometry

Conceptual: 
non-monotonic temperature variation
freezout trajectory may re-enter 10% at 4 GeV/c



 Simulation with Fluctuations 14

t = 1.0 fm/c

Hydro can be run on fluctuating initial conditions
Collective behavior is preserved
Significant event fluctuations persist to final state
Note: “Pulsing” artifact of scaling to peak density
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Easier problems: 
More elegant (read: correct) solution to numerical error should be 
possible
Treatment of isolated, possibly non-thermal areas (applies to smooth 
hydro too!)

Tough problem: defining the freezeout hypersurface
Immediate goal: Simulate multiple collisions (~20 evts) and investigate

extract: 〈v2〉,〈v3〉,〈v4〉 
compute: v2  ➡ Δ(η/s),   v3  ➡ c3AB

Farther out:
Run multiple sets at spanning η/s

→ best fit η/s
→ turbulence scale (Δv2/v2 x η/s)

Repeat for spans of x-value, CGC (MC-KLN)
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Additional Slides
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